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Quantum criticality describes the collective fluctuations of

matter undergoing a second-order phase transition at zero

temperature. It is being discussed in a number of strongly

correlated electron systems. A prototype case occurs in the

heavy fermion metals, in which antiferromagnetic quantum

critical points (QCPs) have been explicitly observed. Here, I

address two types of antiferromagnetic QCPs. In addition to the

standard description based on the fluctuations of the anti-
ferromagnetic order, a local QCP is also considered. It contains

inherently quantum modes that are associated with a critical

breakdown of the Kondo effect. Across such a QCP, there is a

sudden collapse of a large Fermi surface to a small one. I also

consider the proximate antiferromagnetic and paramagnetic

phases, and these considerations lead to a global phase diagram.

Finally, I discuss the pertinent experiments and outline some

directions for future studies.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction A quantum critical point (QCP) refers
to a second-order phase transition at zero temperature. The
notion of quantum criticality is playing a central role in a
number of strongly correlated systems, but this was not
anticipated when the notion was first introduced. Indeed, the
initial work of Hertz [1] was rather modest. From the critical
phenomenon perspective, Hertz formulated a direct exten-
sion of Wilson’s then-newly-completed renormalization-
group (RG) theory of classical critical phenomena [2]. The
formulation retained the basic property of the latter: the zero-
temperature phases are still considered to be distinguished by
an order parameter, a coarse-grained macroscopic variable
characterizing the breaking of a global symmetry of the
Hamiltonian, and the critical modes are the fluctuations of
the order parameter. In this sense, it conforms to the Landau
paradigm for phase transitions. From a microscopic
perspective, Hertz’s discussion built on the historical work
about paramagnons, the overdampedmagnons occurring in a
paramagnetic metal as it becomes more and more ferromag-
netic (for a review, see Ref. [3]). In hindsight, the
convergence of these two lines of theoretical physics seems
to be rather natural. For a Stoner ferromagnet, the
fluctuations of the order parameter (magnetization) at its
QCP is none other but the paramagnons. For a spin-density-
wave (SDW) antiferromagnet, such fluctuations of the order
parameter (staggered magnetization) are correspondingly
antiparamagnons. For completeness, it is interesting to note
on the third line of activities predating Hertz’s work. A QCP
was already contained in themicroscopic solution of an Ising
chain in a transverse field [4], and this solution was being
reformulated in the Landau framework [5].

The order-parameter fluctuations of a classical magnetic
critical point are specified by a f4 field theory in d-spatial
dimensions [2]. Within the Hertz formulation, quantum
mechanics introduces mixing between the statics and
dynamics, and the corresponding critical point is the f4

theory in d þ z dimensions. Here, z is the dynamic exponent;
z ¼ 3 for the QCP of the Stoner ferromagnet, z ¼ 2 for the
SDW QCP, and z ¼ 1 for the transverse-field Ising model.
Within this framework, an important observation, first
discussed for a QCP of an insulating magnet in two
dimensions [6, 7], is that a QCP at T ¼ 0 will influence
physical properties at finite temperatures over a finite-range
of non-thermal control parameters.

While quantum criticality is currently being discussed in
a number of strongly correlated systems [8], it has arguably
been most systematically studied in magnetic heavy fermion
metals [9–11]. From a materials perspective, the heavy
fermions have a number of advantages in this context. In
particular, the large effective electronic mass – the defining
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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characteristics of these systems – implies that the relevant
energy scales are small,making it relatively easy to tune their
ground states by external parameters such as magnetic field
or pressure [12]. At the same time, the understanding of their
effective Hamiltonian – containing competing Kondo and
RKKY interactions [13–15] – gives us intuition on how the
system is being tunedmicroscopically when an external non-
thermal control parameter is varied. Explicit observation of
AF QCPs has been made in a number of heavy fermion
metals [9, 10], including, in particular, CeCu6�xAux,
YbRh2Si2, and CePd2Si2. These systems have allowed
systematic probes of quantum critical behavior through
transport, thermodynamic, and spectroscopic measure-
ments. One very basic lesson is that the influence of quantum
critical fluctuations can cover a large control-parameter
range at non-zero temperatures, and can extend to surpris-
ingly high temperatures [9–11].

Theoretically, an important notion that has emerged is
that QCPs can go beyond the Landau paradigm. The new
type of QCPs being discussed contains critical excitations
that are inherently quantum-mechanical, in the form of a
critical breakup of Kondo singlets [16–19]. The notion that
there could be emergent quantum excitations beyond
order-parameter fluctuations is, while un-orthodox, in fact
natural. After all, the order parameters we are dealing with
are coarse-grained classical variables. It is conceivable
that genuine quantum-mechanical effects – associated
with the Kondo entanglement effect in our case – are part
of the critical fluctuations at a QCP. These considerations
have enjoyed fruitful interactions with experimental
studies in the heavy fermion systems on spin dynamics
[20–23], Fermi surface [24–26], and multiple energy scales
[24, 25, 27]. More broadly, they have impacted on the
developments of QCPs in other systems as well, including
in insulating quantum magnets [28]. It appears that the
many-body-theory community has largely come to terms
with the notion that QCPs exist beyond the Landau
paradigm.

2 Kondo lattice and heavy Fermi liquid Heavy
fermions were traditionally considered as a prototype for
strongly correlated Fermi liquid. The theory of heavy Fermi
liquid was developed in the early 1980s [13]. The
microscopicmodel for themagnetic heavy fermionmaterials
is the Kondo lattice Hamiltonian:
www
H ¼ 1

2

X
ij

IijSi � Sj þ
X
ks

ekc
y
kscks

þ
P
i

JKSi � sc;i:
(1)
The model contains a lattice of spin-1/2 local moments,

ch interact with each other with an AF exchange
raction Iij; we will use I to label say the nearest-neighbor
interaction. It also includes a conduction-electron band, cks,
whi
inte

with a band dispersion ek (and, correspondingly, a hopping
matrix tij);W labels the bandwidth. At each site i, the spin of
the conduction electrons, si;c ¼ ð1=2Þcyi tci, where t are the
.pss-b.com
Pauli matrices, is coupled to a spin-1/2 local moment, Si, via
an AF Kondo exchange interaction JK.

The Kondo screening effect leads to Kondo resonances,
which are charge-e and spin-1/2 excitations. There is one
suchKondo resonance per site, and these excitations induce a
‘‘large’’ Fermi surface. Consider that the conduction electron
band is filled with x electrons per site; for concreteness, we
take 0 < x < 1. The conduction electron band and theKondo
resonances will be hybridized, resulting in a count of 1þ x
electron per site. The Fermi surface would therefore have to
expand to a size that encloses all these 1þ x electrons. This
defines the large Fermi surface [13, 29–31].

In the regime I � JK � W , various approaches, in
particular the slave-boson mean field theory [13, 29, 30],
give rise to the following picture. Consider the conduction
electron Green’s function:
Gc k;vð Þ � F:T : � Ttck;sðtÞcyk;sð0Þ
D Eh i

; (2)
where F. T. is taken with respect to t. This Green’s function
is related to a self-energy, S(k, v), via the standard Dyson
equation:
Gc k;vð Þ ¼ 1

v� ek � S k;vð Þ : (3)
In the heavy Fermi liquid state, S(k, v) is non-analytic
and contains a pole in the energy space:
S k;vð Þ ¼ b�ð Þ2

v� e�f
: (4)
Inserting Eq. (4) into Eq. (3), we end upwith two poles in
the Green’s function:
Gc k;vð Þ ¼ u2k
v� E1;k

þ v2k
v� E2;k

: (5)
Here,
E1;k ¼ 1=2ð Þ ek þ e�f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ek � e�f
� �2þ4 b�ð Þ2

q� �
;

E2;k ¼ 1=2ð Þ ek þ e�f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ek � e�f
� �2þ4 b�ð Þ2

q� � (6)
describe the dispersion of the two heavy-fermion bands.
These bands must accommodate 1þ x electrons, so the new
Fermi energy has to lie in a relatively flat portion of the
dispersion, leading to a small Fermi velocity and a large
quasiparticle mass m�.

It is important to make a note here that we have used a k-
independent self-energy to induce a large reconstruction of
the quasiparticle dispersion ðek ! E1;k;E2;kÞ and a corre-
sponding large reconstruction of the Fermi surface. In fact,
the self-energy of Eq. (4) contains only two parameters, the
pole strength (i.e., the residue), (b�)2, and the pole location,
e�f . Equation (4) does not contain the incoherent features
beyond the well-defined pole. Such incoherent components
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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can be introduced, through e.g., the dynamical mean field
theory [32–35], and they will induce non-zero damping (of
the Fermi liquid form) to the quasiparticle excitations in
Eq. (5). But the fact remains that a k-independent self-energy
is adequate to capture the Kondo effect and the resulting
heavy quasiparticles. We will return to this feature shortly in
the discussion of a Kondo breakdown effect.

3 Quantum criticality in the Kondo lattice
3.1 General considerations The Kondo interaction

drives the formation of Kondo singlets between the local
moments and conduction electrons. At high temperatures,
the system is in a fully incoherent regime with the local
moments weakly coupled to conduction electrons. Going
below some scale T0

K, the initial screening of the local
moments starts to set in. Eventually, at temperatures below
some Fermi-liquid scale, TFL, the heavy quasiparticles are
fully developed.

When the AF RKKY interaction among the local
moments becomes larger than the Kondo interaction, the
system is expected to develop an AF order. An AF QCP is
then to be expected, when the control parameter, d ¼ I

�
T0
K,

reaches some critical value dc. At d > dc, the AF order will
develop as the control parameter is lowered through the AF-
ordering line, TN (d).

In addition, the RKKY interactions will also eventually
lead to the suppression of the Kondo singlets. Qualitatively,
the RKKY interactions promote singlet formation among the
local moments, thereby reducing the tendency of singlet
formation between the local moments and conduction
electrons. This will define an energy (E�

loc) or temperature
(T�

loc) scale, describing the breakdown of the Kondo effect.
On very general grounds, the T�

loc line is expected to be a
crossover at non-zero temperatures, but a sharp transition at
zero temperature.

To study these issues theoretically, one key question is
how to capture not only the magnetic order and Kondo-
screening, but also the dynamical competition between the
Kondo and RKKY interactions. The microscopic approach
that is capable of doing this is the extended dynamical mean
field theory (EDMFT) [36–38]. The two solutions [16, 39–
45] that have been derived through EDMFT are summarized
below.

Large-N approaches based on slave-particle representa-
tions of the spin operator are also commonly used to study
Kondo-like systems. One type of approach is based on a
fermionic representation of the spin [18, 19]. This repres-
entation naturally incorporates the physics of singlet
formation, so it captures the Kondo singlets (as well as the
singlets among the local moments), but it does not include
magnetism in the large-N limit. One may allow a magnetic
order in a static mean-field theory for a finite-N [18].
However, the magnetic transition and breakdown of Kondo
screening are always separated in the phase diagram and the
zero-temperature magnetic transition is still of the SDW
type. This, we believe, is a manifestation of the static nature
of the mean field theory.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
A Schwinger-boson-based large-N formulation is
another microscopic approach that is being considered in
this context [46]. This approach naturally incorporates
magnetism. While it is traditionally believed that bosonic
representations of spin in general have difficulty to capture
the Kondo screening physics at its large-N limit, there is
indication [46] that the dynamical nature of the formulation
here allows an access to at least aspects of theKondo effect. It
will be interesting to see what type of quantum phase
transition this approach will lead to for the Kondo lattice
problem.

This is a subject that is still in a very rapid development,
and a number of other theoretical approaches are also being
taken [47–50].

3.2 Microscopic approach based on the
extended dynamical mean field theory The
EDMFT method incorporates intersite collective fluctu-
ations into the dynamical mean field theory framework [32,
33]. This systematic method is constructed within a
‘‘cavity’’, diagrammatic, or functional formalism [36–38].
It is conserving, satisfying the various Ward identities.
Diagrammatically, EDMFT incorporates an infinite series
associated with intersite interactions, in addition to the local
processes already taken into account in the dynamical mean
field theory.

Within the EDMFT, the dynamical spin susceptibility
and the conduction-electron Green’s function respectively
have the forms: x q;vð Þ ¼ MðvÞ þ Iq

� ��1
and G k; eð Þ ¼

eþ m� ek � SðeÞ½ ��1
. The correlation functions, x (q, v)

andG (k, e), aremomentum-dependent.At the same time, the
irreducible quantities, M (v) and S (e) are momentum-
independent. They are determined in terms of aBose–Fermi–
Kondo model,
Himp ¼ JKS � sc þ
P
p;s

Epc
y
pscps

þg
P
p
S � Fp þ F y

�p

	 

þ
P
p
wp F y

p � Fp:
(7)
The fermionic and bosonic baths are determined by self-
consistency conditions, which manifest the translational
invariance, xlocðvÞ ¼

P
q xðq;vÞ, and GlocðvÞ ¼P

k Gðk;vÞ.
The 0þ 1-dimensional quantum impurity problem,

Eq. (7), has the following Dyson equations: MðvÞ ¼
x�1
0 ðvÞ þ 1

�
xlocðvÞ and SðvÞ ¼ G�1

0 ðvÞ � 1=GlocðvÞ,
where x�1

0 ðvÞ ¼ �g2
P

p 2wp

.
½v2 � w2

p� and G0ðvÞ ¼P
p 1=ðv� EpÞ are the Weiss fields. The EDMFT formu-

lation allows us to study different degrees of quantum
fluctuations as manifested in the spatial dimensionality of
these fluctuations. The case of two-dimensional magnetic
fluctuations are represented in terms of the RKKY density of
states that has a non-zero value at the lower edge, e.g.:
rI xð Þ �
X
q

d x� Iq
� �

¼ 1=2Ið ÞY I � jxjð Þ; (8)
www.pss-b.com
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where Q is the Heaviside step function. Likewise, three-
dimensional magnetic fluctuations are described in terms of
rI(x) which vanishes at the lower edge in a square-root
fashion, e.g.:
www
rI xð Þ ¼ 2
�
pI2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � e2

p
Y I � jxjð Þ: (9)
Figure 1 (online colour at: www.pss-b.com) Illustration of the
local QCP, which has a critical breakdown of the Kondo effect.
TheE�

loc scale separates between the regimeswhere the system goes
toward either the Kondo-screened paramagnetic metal ground state
or the Kondo-destroyed AF metal ground state. The Fermi surface
goes frombeing large in theparamagenticmetalphase tobeing small
in the AF metal phase. T 0 is the scale at which the initial Kondo
screening sets in as temperature is lowered from above T 0.
The bosonic bath reflects the effect of the dynamical
magnetic correlations, primarily among the local moments,
on the local Kondo effect. On approach to a magnetic QCP,
its spectrum turns soft, and its ability to suppress the Kondo
effect increases. This effect has been explicitly seen in a
number of specific studies [16, 39–45]. Moreover, the zero-
temperature transition is second-order whenever the same
form of the effective RKKY interaction appears in the
formalism on both sides of the transition [51, 52].

3.3 Spin-density-wave QCP The reduction of the
Kondo-singlet amplitude by the dynamical effects of the
RKKY interactions among the local moments has been
considered in some detail in a number of studies based on
EDMFT [16, 39–45]. Irrespective of the spatial dimension-
ality, this weakening of the Kondo effect is seen through the
reduction of an E�

loc scale.
Two classes of solutions emerge depending on whether

this Kondo breakdown scale vanishes at the AF QCP. In the
case of Eq. (9), E�

loc has not yet been completely suppressed
to zero when the AF QCP, dc, is reached from the
paramagnetic side (but it can go to zero inside the AF
region, as further discussed in Section 4). The quantum
critical behavior, at energies below E�

loc, falls within the
Hertz–Moriya–Millis type [1, 53, 54]. The zero-temperature
dynamical spin susceptibility has the following form:
x q;vð Þ ¼ 1

f qð Þ � iav
: (10)
Here f ðqÞ ¼ Iq � IQ, and is generically / ðq� QÞ2 as the
wavevector q approaches the AF ordering wavevector Q.
The QCP is described by a Gaussian fixed point. At non-zero
temperatures, a dangerously irrelevant operator invalidates
the so-called v/T scaling [54].

3.4 Local quantum critical point Another class of
solution corresponds to E�

loc ¼ 0 already at dc. It arises in the
case of Eq. (8), where the quantum critical magnetic
fluctuations are strong enough to suppress the Kondo effect.

The solution to the local spin susceptibility has the form:
x q;vð Þ ¼ 1

f qð Þ þ A �ivð ÞaW v=Tð Þ : (11)
This expression was derived [16, 39] within the EDMFT
studies, through the aid of an e-expansion approach to the
Bose–Fermi–Kondo model. At the AF QCP, the Kondo
effect itself is critically destroyed (cf. Fig. 1). The
calculation of the critical exponent a is beyond the reach
of the e-expansion. In the Ising-anisotropic case, a has been
.pss-b.com
calculated numerically [40, 43–45]: it is fractional, and is
about 0.7.

The breakdown of the Kondo effect not only affects
magnetic dynamics, but also influences the single-electron
excitations. As the QCP is approached from the paramag-
netic side, the quasiparticle residue zL / ðb�Þ2, where (b�)2 is
the strength of the pole of S(k, v) [cf. Eq. (4)], goes to zero.
The large Fermi surface turns critical.

The breakdown of the large Fermi surface implies that
the Fermi surface will be small on the antiferromagnetically
ordered side. This leads us to the issue of the Kondo effect
inside the AF phase, which we now discuss in some detail.
4 Antiferromagnetism and Fermi surface in
Kondo lattices To consider the Kondo effect in the
ordered phase, we focus on the parameter regime of the
Kondo lattice model, Eq. (1), in the limit JK � I � W . As
defined above, I is the scale for the RKKY exchange
interaction, andW the bandwidth of the conduction-electron
band.

In this limit, we can use as our reference point the JK ¼ 0
case [55]. At this reference point, the local moments with AF
exchange interactions are decoupled from the conduction
electrons. We will focus on the case that the local-moment
system itself is in a collinear AF state. The low-energy theory
for the local-momentHamiltonian [the first term ofEq. (1)] is
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



480 Q. Si: Quantum criticality and global phase diagram
p

h
ys

ic
a ssp st

at
u

s

so
lid

i b
the quantum non-linear sigma model (QNLsM) [56, 6]:
� 20
SQNLsM ¼ c

2g

Z
ddx dt rnð Þ2þ @n

c@t

� �2
" #

: (12)
Here c is the spin-wave velocity and g characterizes the
strength of the quantum fluctuations. There are gapless
excitations in two regions of the wavevector space: the
staggered magnetization (q near Q) specified by the n field
and the uniform magnetization (q near 0) described by
n� @n=@t.

When the Fermi surface of the conduction electrons does
not intersect the AF zone boundary, only the uniform
component of the local moments can be coupled to the spins
of the conduction-electron states near the Fermi surface. The
effective Kondo coupling takes the form,
SK ¼ l

Z
ddx dt sc � n� @n=@t: (13)
A momentum-shell RG treatment requires a procedure
that mixes bosons, which scale along all directions in
momentum space [2], and fermions, which scale along the
radial direction perpendicular to the Fermi surface [57].
Using the procedure specified in Ref. [58], we found l to be
marginal at the leading order [55], just like in the
paramagnetic case. The difference from the latter appears
at the loop level: l is exactly marginal to infinite loops [55].

The fact that l does not run toward infinity implies a
breakdown of the Kondo effect. This is supplemented by a
large-N calculation [55], which showed that the effective
Kondo coupling, Eq. (13), leads to the following self-energy
for the conduction electrons:
S k;vð Þ / vd: (14)
Figure 2 (online colour at: www.pss-b.com) The T ¼ 0 global
phase diagram of the AF Kondo lattice. G describes magnetic
frustration or spatial dimensionality, and jK is the normalizedKondo
coupling. The four (22) types of phases, AFS, AFL, PS, and PL arise
since they contain two kinds of distinctions: antiferromagnetism
(AF) or paramagnetism (P) on the one hand, and Kondo screening
(Fermi surface large, ‘‘L’’) or Kondo breakdown (Fermi surface
small, ‘‘S’’) on the other hand. The lines ‘‘I’’, ‘‘II’’, ‘‘III’’ describe
three types of trajectories for the quantum transition.
The absence of a pole in S(k, v), in contrast to Eq. (4),
implies the absence of any Kondo resonance. Correspond-
ingly, the Fermi surface is small.

When the Fermi surface of the conduction electrons
intersects the AF zone boundary [59], the staggered
magnetization, n, can be directly coupled to the spins of
the conduction electrons. However, this coupling is pro-
portional to ~q ¼ q� Qj j, as dictated byAdler’s theorem. The
Kondo coupling remains marginal, and the Fermi surface is
still small.

5 Toward a global phase diagram
5.1 How to melt a Kondo-destroyed anti-

ferromagnet Given the understanding that AFS, the AF
state with a small Fermi surface, is a stable phase, it would be
illuminating to approach the quantum transition from this
ordered state.

Onemay consider to use theQNLsMrepresentation, and
study the transition by increasing the effective Kondo
coupling, l of Eq. (13). A recent study, using an RG analysis
of an action closely related to that discussed in Section 4 but
with the conduction electrons integrated out, has gone along
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
this direction [60]. Such an analysis, however, cannot
capture the overall phase diagram of the Kondo lattice
systems.What ismissing so far is the Berry-phase term of the
QNLsM representation:
SBerry ¼ i s
P
x
hxAx

Ax ¼
R b

0
dt

R 1

0
du n � @n

@u
� @n

@t

� �� �
:

(15)
Here, s¼ 1/2 is the size of the local-moment spin, Ax is the
area on the unit sphere spanned by nðx; tÞ with t 2 ð0;bÞ,
and hx ¼ �1 at even/odd sites (consider, for definiteness, a
cubic or square lattice with Néel order).

The Berry phase term can be neglected deep inside the
AF phase. For smooth configurations of n in the (x,t) space,
the Berry phase term vanishes. Topologically non-trivial
configurations of n in (x,t) yield a finite Berry phase. They,
however, cost a non-zero energy inside the AF phase and can
be neglected for small JK and, correspondingly, small l. As
JK is increased, on the other hand, these gapped configur-
ations come into play. Indeed, they are expected to be crucial
for capturing the Kondo effect. Certainly, the Kondo singlet
formation requires the knowledge of the size of the
microscopic spins, and the Berry phase term is what encodes
the size of the spin in the QNLsM representation.

5.2 Global phase diagram We can address these
effects at a qualitative level, in terms of a global phase
diagram. We consider a two-dimensional parameter space
[61], as shown in Fig. 2. The vertical axis describes the local-
moment magnetism. It is parameterized by G, which
characterizes the degree of quantum fluctuations of the
local-moment magnetism; increase in G reduces the Néel
www.pss-b.com
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order. This parameter can be a measure of magnetic
frustration, e.g., G ¼ Innn=Inn, the ratio of the next-nearest-
neighbor exchange interaction to the nearest-neighbor one,
or it can be the degree of spatial anisotropy. The horizontal
axis is jK � JK=W , the Kondo coupling normalized by the
conduction-electron bandwidth. We are considering a fixed
value of I/W, which is typically much less than 1, and a fixed
number of conduction electrons per site, which is taken to be
0 < x < 1 without a loss of generality.

The AFS phase describes the small-Fermi-surface AF
state, whose existence has been established asymptotically
exactly using the RG method as described in the previous
section. The PL phase is the standard heavy Fermi liquidwith
heavy quasiparticles and a large Fermi surface [13]. TheAFL
phase corresponds to an AF state in the presence of Kondo
screening. It can either be considered as resulting from the
AFS phase once the Kondo screening sets in, or from the PL
phase via an SDW instability.

We have discussed the above three phases in some detail
before [61, 55]. Also alluded to in Ref. [61] is another
important feature of this global phase diagram. Along the
vertical axis, the conventional Néel order becomes unstable
asG goes beyond some threshold value. The phase atG > Gc

is a paramagnet, restoring the spin-rotational invariance that
was broken in the Néel state. It typically still contains
valence-bond solid order (spin Peierls), although the cases
without any conventional-symmetry-breaking (spin liquid)
have also been extensively discussed especially in lattices
with strong geometrical frustration.

These considerations lead to the natural possibility of a
PS phase, a paramagnetic phase with a Kondo breakdown
(and, hence, a small Fermi surface) which either breaks or
preserves translational invariance. Related Considerations
are also being pursued in Refs. [62, 63].

This global phase diagram contains three routes for a
system to go from the AFS phase to the PL phase:
(i) T
www
rajectory ‘‘I’’ is a direct transition between the two.
This AFS–PL transition gives rise to a local QCP. A
critical Kondo breakdown occurs at theAFQCP, giving
rise to a sudden small-to-large jumpof theFermi surface
and the vanishingof aKondo-breakdown scale,E�

loc [16,
17].
(ii) T
rajectory ‘‘II’’ goes through theAFLphase.TheQCPat
the AFL–PL boundary falls in the Hertz–Moriya–Millis
type [1, 53, 54].
(iii) T
rajectory ‘‘III’’ goes through the PS phase. The PS–PL
transition could describe either a spin liquid to heavy
Fermi liquid QCP [18, 19], or a spin Peierls to heavy
Fermi liquid QCP.
5.3 Discussion of the global phase diagram We
now turn to a number of points to elaborate on the global
phase diagram.

Consider first the transition along the trajectory I. For
this transition to be second order, the quasiparticle residues
associated with both the small and large Fermi surfaces must
.pss-b.com
vanish as the QCP is approached from either side [16, 17, 39,
61, 64].

The transition along the trajectory II involves an
intermediate AFL phase. This transition can in general be
specified [65] through an ‘‘order parameter’’ for the Kondo
screening,

P
s F

y
scs

 �
6¼ 0, (where Fs is a composite

operator involving a spin operator of the local moment and
a conduction electron operator),which is non-zero in theAFL
phase and vanishes in theAFS.When theAF order parameter
is relatively small, this transition coincides with a Lifshitz
transition between Fermi surfaces of different topology [61,
55]. Several authors [66–69] also identified a Lifshitz
transition within a static slave-boson mean-field and related
treatments [70, 71] of the Kondo lattice problem. In our
global phase diagram, these transitions should be considered
as transitions inside the AFL region as the AF order
parameter is increased [65], and are to be differentiated
from the AFL to AFS transition discussed here.

For a continuous transition between the AFS and AFL
phases, the quasiparticle residues of both the large and small
Fermi surfacesmust again vanish continuously as the QCP is
approached from either side.

The PS phase is a state with suppressed Kondo effect.
Whether it corresponds to a non-Fermi liquid phase [72] or
displays Fermi liquid behavior is an issue that remains to be
determined. Two factors come into play. First, what is the
nature of the local-moment component? In a two-dimen-
sional square lattice, for instance, spin-1/2 moments at
G > Gc are expected to develop a spin-Peierls order. With
geometrical frustration, as occurring in e.g., a pyrochlore or
kagome lattice, it is possible that the local-moment
component goes into a spin liquid phase, although this issue
is not yet theoretically settled. Second, what is the nature of
the Kondo coupling between the local moments and the
conduction electrons? The answer will crucially depend on
whether the excitation spectrum of the local-moment
component is gapped or gapless. If it is gapped, the Kondo
coupling will be irrelevant and the low-energy properties
will have a Fermi liquid form. If it is gapless, the behavior of
the Kondo coupling can vary depending on the form it takes
when expressed in terms of the low-energy effective
excitations of the local-moment component and the conduc-
tion electrons.

6 Experiments on AF heavy fermions There
are by now many heavy fermion metals in which QCPs
have been either explicitly observed, or implicated.
We discuss some of them in light of our theoretical
considerations.

6.1 Global phase diagram A number of heavy
fermionmaterials might be classified according to our global
phase diagram, Fig. 2.

In CeCu6�xAux, both the pressure- and doping-induced
QCPs show the characteristics of local quantum criticality,
accessed through trajectory I. The field-induced QCP [73],
however, has the properties of an SDW QCP. We interpret
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the field-tuning as taking the trajectory II. It will be
interesting to explore whether an AFS–AFL boundary can
be located as a function of magnetic field.

Perhaps themost complete information exists in the pure
and doped YbRh2Si2 system. In the pure YbRh2Si2, strong
evidence exists that the field-induced transition goes along
the trajectory I (see below). A surprising recent development
came from experiments in the doped YbRh2Si2. In the Co-
doped YbRh2Si2, the field-induced transition seems to travel
along trajectory II [74]. In the Ir-doped [74] and Ge-doped
[62] YbRh2Si2, on the other hand, the field-induced
transition appears to go along trajectory III. Recent
experiments in pure YbRh2Si2 under pressure [75] yield
results which are very similar to those of Co-doped
YbRh2Si2 at ambient pressure, suggesting that the results
observed in the doped YbRh2Si2 are in fact intrinsic and do
not primarily result from disorder.

CeIn3 is one of the earliest heavy fermion metals in
which an AFQCPwas implicated [76]. This system is cubic,
and we would expect it to lie in the small G region of the
global phase diagram. Indeed, there is indication that this
cubic material displays an AFS–AFL Lifshitz transition as a
function of magnetic field [77].

It is to be expected that magnetic frustration will help
reach the PS phase. The heavy fermion systemYbAgGe has a
hexagonal lattice, and, indeed, there is some indication that
the PS phase exists in this system [78]; lower-temperature
measurements over an extended field range, however, will be
needed to help establish the detailed phase diagram.

Finally, it is important to note that considerable
experiments exist on the nature of the Fermi surface inside
the various phases. The PL phasewas historically established
through the observation of the large heavy-fermion Fermi
surface [79], while the existence of the AFS phase itself has
been supported by the Fermi-surface measurements in a
large number of AF heavy fermions [80, 81].

6.2 Kondo breakdown at the antiferromagnetic
QCP The most direct evidence for the local QCP occurs in
YbRh2Si2 and in CeCu6�xAux. For YbRh2Si2, the Fermi-
liquid behavior is observed both inside the AF-ordered phase
and the field-induced non-magnetic phase [82]. In addition,
Hall-coefficient measurement [24, 25] have provided fairly
direct evidence for the breakdown of the Kondo effect
precisely at the AF QCP. The existence of the Kondo-
breakdown scale,T�

loc, has also been seen in both theHall [24,
25] and thermodynamic [27] experiments.

For CeCu6�xAux, the unusual magnetic dynamics and
bulk magnetic susceptibility [21] observed near the
x ¼ xc 	 0:1 by early neutron scattering measurements is
understood in terms of such a critical Kondo breakdown in
the form of local quantum criticality. A divergent effective
mass expected in this picture is consistent with the
thermodynamic measurement in both the doping and
pressure induced QCP in this system [10]. This picture
necessarily implies a Fermi-surface jump across the QCP, as
well as aKondo-breakdown energy scaleE�

loc going to zero at
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
the QCP, but such characteristics are yet to be probed in
CeCu6�xAux.

CeRhIn5 is amember of the Ce-115 heavy fermions [83].
It contains both antiferromagnetism and superconductivity
in its pressure-field phase diagram. When a large-enough
magnetic field is applied and superconductivity is removed
(H > Hc2), there is evidence for a single QCP between AF
and non-magnetic phases [84, 85]. At this QCP, the de Haas-
van Alphen (dHvA) results [26] suggest a jump in the Fermi
surface and a divergence in the effective mass.

One of the earliest systems in which anomalous
magnetic dynamics was observed is UCu5�xPdx [20]. It is
tempting to speculate [61] that a Kondo-breakdown spin-
glass QCP underlies this observation.

6.3 Spin-density-wave QCP Neutron scattering
experiments have provided some evidence that the AF
QCPs in both Ce(Ru1�xRhx)2Si2 [22] and Ce1�xLaxRu2Si2
[23] have the SDW form. Likewise, in CeCu2Si2, transport
and thermodynamic measurements [86] have indicated that
its field-induced QCP belongs to the SDW category.

7 Summary We have discussed the physics beyond
the order-parameter fluctuations in the quantum criticality
of Kondo lattice systems. Of particular interest is the
local QCP, which features a critical Kondo breakdown.
Microscopic studies on this type of QCP have mostly been
based on the EDMFT.

The criticalKondo breakdown at the localQCP leads to a
jump in the Fermi surface, a critical suppression of the
quasiparticle residues of both the small and large Fermi
surfaces, and the vanishing of a Kondo-breakdown scale at
the QCP. Considerable experimental evidences for such
properties have emerged, which we have summarized.

At the local QCP, there is also a dynamical spin
susceptibility which has features of an interacting fixed
point. The form, given in Eq. (11), contains a self-energy that
has an anomalous frequency dependence, with a fractional
exponent, as well as v/T scaling. In contrast to the non-
analytic frequency dependence, the momentum dependence
of the self-energy is completely regular [which is, in fact,
absent in Eq. (11)]. It is interesting to note that recent studies
of quantum critical behavior using the gravitational
perspective developed in the string-theory context have
identified certain symmetry reasons [87] for a single-electron
self-energy to have non-analytic frequency dependence and
smooth momentum dependence [88]. Whether related
emergent symmetry underlies the contrasting frequency
and momentum dependence in the two-particle self-energy,
as appearing in Eq. (11) for the dynamical spin susceptibility,
is an intriguing open question worthy of future studies.

We have also discussed a global phase diagram for the
antiferromagnetic heavy fermion metals. Detailed theoreti-
cal studies to access the overall phase diagram will be much
needed.

These developments on the new type of magnetic
quantum phase transitions with unusual evolutions of the
www.pss-b.com
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Fermi surface have not yet been accompanied by corre-
sponding studies on superconductivity. There are many
theoretical questions one can ask. Microscopically, whether
and how superconductivity can arise near the Kondo-
breakdown local QCP [9, 84, 89] is an intriguing open
question. Macroscopically, there are general considerations
that the entropy accumulation near QCPs [90, 91] foster the
formation of unconventional phases, including unconven-
tional superconductivity [76]. It would be quite meaningful
to develop a theoretical framework along this direction.
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